This page presents the resources resulting from the HubIS project. These resources can be for scientific or other actors.

Performance gaps of Irrigation Systems in Mediterranean agriculture: can participatory action research for the adoption of technological innovations help?

The modernization of irrigation in Mediterranean countries has boosted irrigated agriculture. Undoubtedly, this transformation has increased performance levels. However, new compelling challenges have arisen: (i) the irrigation performance gap remains greater than expected; (ii) irrigation intensification and expansion are at the root of pollution of valuable ecosystems and overdraft of non-renewable water resources; (iii) water savings are not as foreseen due to unexpected rebound effects of irrigation efficiency improvements; (iv) modern energy-eager pressurized systems are costly and environmentally questionable. Furthermore, it is now clear that climate change and its foreseen variability will accentuate the vulnerability of agriculture and ecosystems, under the combined effect of increased temperature and reduced precipitation in areas already coping with water scarcity. The aim of this Special Feature is first to analyse the emergence of, and evaluate, low-cost technological innovations that aim at reducing this performance gap and thus improve the sustainability of irrigation systems in the Mediterranean region. These innovations comprise new tools and services for farmers and water users associations, designed to increase water, nutrient and energy use efficiency, such as low-tech sensors or free satellite data. The gap analysis between actual and attainable irrigation performance can be tackled from the farm scale, based on typologies of farmers in order to consider their diversity, to the irrigation scheme scale, with specific questions addressed concerning collective management dysfunction, infrastructure adaptation to on-demand management, and social and physical interactions within the scheme, up to the basin level to upscale environmental effects. The Special Issue will further analyse how participatory action research undertaken in an open innovation environment where technology adoption and co-design can flow fluently between different actors could boost – or not – their adoption, compared to top-down public policy approaches. Papers will describe bottom-up participatory action research that tailor innovation to local needs and conditions, demonstrating that there are many pathways to improve irrigation performance beyond the simplistic promotion of drip-irrigation.

Published papers from the HubIS community:

Gavilan et al., The Riego Berry mobile application: A powerful tool to improve on-farm irrigation performance in berry crops, https://doi.org/10.1016/j.agwat.2024.108682

Cameira et al., Linking participatory approach and rapid appraisal methods to select potential innovations in collective irrigation systems, https://doi.org/10.1016/j.agwat.2024.108885

Session co-organization: Monitoring and modelling the water cycle in the agricultural systems: observation and data fusion methods for improved knowledge and quantification of processes, impact assessment of water use and forecast

Hydrological modeling plays a crucial role in understanding and predicting the behavior of water systems, which is important for water resource management, flood forecasting, impact assessment of human activities, environmental planning. However, the accuracy of these models heavily relies on accurate input data, which can be challenging to obtain, especially in regions with limited ground-based observations. In particular, agricultural systems, and notably irrigated systems, have a major impact on the hydrological cycle by increasing evapotranspiration, storing water in reservoirs, extracting water from water bodies and releasing to others, etc. Still, the use of water by agriculture – accounting for the major part of human activities in terms of freshwater use – is in many regions poorly quantified and controlled. However, information on agricultural water management at various spatial scales is getting more and more accessible with the development of Information and Communication Technologies and remote sensing techniques. Remote sensing, thanks to an ever-increasing number of satellite constellations, specific products, open platforms, provides spatially distributed high-value information for water management. By harnessing data, researchers can provide spatially and temporally comprehensive information on precipitation and soil moisture, filling critical gaps in traditional observation networks, provide information on crop stages, crop evapotranspiration etc. ICT enable accurate monitoring, automate irrigation water application and facilitate the continuous exchange of information across the water supply chain. While both approaches provide useful information individually, combining them through data fusion techniques may largely increase the value of each technique. Data fusion in hydrological modeling involves combining remote sensing-derived data with ground-based measurements to create a more complete picture of the hydrological cycle. This integration is achieved through a synergy of advanced techniques such as data assimilation, machine learning algorithms and statistical methods. This session aims to provide a forum for discussion between methodologies that contribute to quantify hydrological processes in cropped areas, notably agricultural water uses, whether direct water use or indirect modification of hydrological cycles. This session was supported by two Euro-Mediterranean projects (https://prima-hubis.org/, WaterLine).

HubIS communication in this session

Vandôme, P., Berkaoui, A., Guillemin, C., and Leauthaud, C.: Revisiting border irrigation management: benefits of new in-field sensor-based control compared to conventional cutoff times, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16164, https://doi.org/10.5194/egusphere-egu24-16164, 2024.

Dercas, N., Tziatzios, G., Faraslis, I., Dalezios, N., Alpanakis, N., Spiliotopoulos, M., Sakellariou, S., Sidiropoulos, P., and Brissimis, V.: Improving satellite estimation of actual evapotranspiration using field monitoring and crop simulation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20601, https://doi.org/10.5194/egusphere-egu24-20601, 2024.

Sakellariou, S., Spiliotopoulos, M., Alpanakis, N., Faraslis, I., Sidiropoulos, P., Tziatzios, G., Karoutsos, G., Dalezios, N., and Dercas, N.: Spatial and temporal drought analysis in susceptible agroecosystems: the case of Thessaly region, Greece, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17122, https://doi.org/10.5194/egusphere-egu24-17122, 2024.

Cuadrado-Alarcon, B., Taguas, E. V., Domenech, I., Mateos, L., and Gomez-Macpherson, H.: Hydrological indicators in an irrigated catchment with different crops in Spain: how research can contribute to fulfilling Sustainable Development Goals (SDG) through the basic indices for FabLabs., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6311, https://doi.org/10.5194/egusphere-egu24-6311, 2024.

Faraslis, I., Dalezios, N., Alpanakis, N., Tziatzios, G., Spiliotopoulos, M., Sakellariou, S., Sidiropoulos, P., Dercas, N., and Brissimis, V.: Agroclimatic zoning methodology for selection of suitable crop in water limited Mediterranean areas, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20715, https://doi.org/10.5194/egusphere-egu24-20715, 2024. Poster

HubIS communications in other sessions

Belaud, G., Daudin, K., Montginoul, M., Charron, F., Igbui, P., Leauthaud, C., and Vandôme, P.: Sustainability of water transfers in the Crau plain, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17364, https://doi.org/10.5194/egusphere-egu24-17364, 2024. Poster

Daudin, K., Belaud, G., Bouzidi, Z., Leauthaud, C., Lejars, C., and Schwien, L.: A social-physical approach to question the scaling of local innovations for improving agricultural water management in the Mediterranean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16137, https://doi.org/10.5194/egusphere-egu24-16137, 2024.

Scientific papers and communications

Ould Rebai A., Hartani T., Nacer Chabaca M., Kuper M. (2017) Une innovation incrémentielle : la conception et la diffusion d’un pivot d’irrigation artisanal dans le Souf (Sahara algérien). Cahiers Agricultures, 26 (3), n.spéc. Les oasis en Afrique du Nord : dynamiques territoriales et durabilité des systèmes de production agricole:35005, 9 p. https://doi.org/10.1051/cagri/2017024

Ould Rebai, A., Hartani, T., & Kuper, M. (2022). The outward journey of a local innovation: the dissemination of an artisanal irrigation pivot from Algeria’s Sahara. New Medit, 21(5). https://doi.org/10.30682/nm2205e

Vandôme, P.; Leauthaud, C.; Moinard, S.; Sainlez, O.; Mekki, I.; Zairi, A.; Belaud, G.; Making technological innovations accessible to agricultural water management: Design of a low-cost wireless sensor network for drip irrigation monitoring in Tunisia, Smart Agricultural Technology, Volume 4, 2023, 100227, ISSN 2772-3755, https://doi.org/10.1016/j.atech.2023.100227

Vandôme, P., Belaud, G., Leauthaud, C., Moinard, S., Mekki, I., Zairi, A., Charron, F., Leconte, J., Ferchichi, I., and Ajmi, T.: Exploring ways to improve agricultural water management on two Mediterranean irrigated systems : promises of wireless low-tech sensor networks , IAHS-AISH Scientific Assembly 2022, Montpellier, France, 29 May–3 Jun 2022, IAHS2022-90, https://doi.org/10.5194/iahs2022-90, 2022

Vandôme, P., Moinard, S., Brunel G., Tisseyre B., Leauthaud, C., Belaud, G.; A low cost sensor to improve surface irrigation management. Precision Agriculture ’23. https://doi.org/10.3920/978-90-8686-947-3_41

Communication on EGU blog : Making measurements accessible through low-tech hydro sensors: a step towards better agricultural water management?

Sakellariou, S.; Spiliotopoulos, M.; Alpanakis, N.; Faraslis, I.; Sidiropoulos, P.; Tziatzios, G.A.; Karoutsos, G.; Dalezios, N.R.; Dercas, N. Spatiotemporal Drought Assessment Based on Gridded Standardized Precipitation Index (SPI) in Vulnerable Agroecosystems. Sustainability 2024, 16, 1240. https://doi.org/10.3390/su16031240

Sidiropoulos, P.; Dalezios, N.R.; Loukas, A.; Mylopoulos, N.; Spiliotopoulos, M.; Faraslis, I.N.; Alpanakis, N.; Sakellariou, S. Quantitative Classification of Desertification Severity for Degraded Aquifer Based on Remotely Sensed Drought Assessment. Hydrology 2021, 8, 47. https://doi.org/10.3390/hydrology8010047

Bazzi, H.; Baghdadi, N.; Najem, S.; Jaafar, H.; Le Page, M.; Zribi, M.; Faraslis, I.; Spiliotopoulos, M. Detecting Irrigation Events over Semi-Arid and Temperate Climatic Areas Using Sentinel-1 Data: Case of Several Summer Crops. Agronomy 2022, 12, 2725. https://doi.org/10.3390/agronomy12112725

Kettani, A., Hammani, A., Taky, A. & Kuper, M. (2020) L’expérience de l’irrigation par aspersion dans les secteurs collectifs de la Grande Hydraulique du Maroc. Revue Marocaine des Sciences Agronomiques et Vétérinaires, Available from: https://www.agrimaroc.org/index.php/Actes_IAVH2/article/view/864#sec-0

Kettani, A., Hammani, A., Taky, A. & Kuper, M. (2022) Challenging ‘one size fits all’: Continued use of sprinkler irrigation in a state-led drip irrigation project in Morocco. Irrigation and Drainage, 71( 3), 619– 634. Available from: https://doi.org/10.1002/ird.2675

Maria do Rosário Cameira, Isabel Rodrigo, Andreia Garção, Manuela Neves, Antónia Ferreira, Paula Paredes, Linking participatory approach and rapid appraisal methods to select potential innovations in collective irrigation systems, Agricultural Water Management, Volume 299, 2024, 108885, ISSN 0378-3774, https://doi.org/10.1016/j.agwat.2024.108885

Ferreira, A.; Rolim, J.; Paredes, P.; Cameira, M.d.R. Assessing Spatio-Temporal Dynamics of Deep Percolation Using Crop Evapotranspiration Derived from Earth Observations through Google Earth Engine. Water 2022, 14, 2324. https://doi.org/10.3390/w14152324

Esteves, R.; Calejo, M.J.; Rolim, J.; Teixeira, J.L.; Cameira, M.d.R. Framework for Assessing Collective Irrigation Systems Resilience to Climate Change—The Maiorga Case Study. Agronomy 2023, 13, 661. https://doi.org/10.3390/agronomy13030661

Ferreira, A.; Rolim, J.; Paredes, P.; Cameira, M.d.R. Methodologies for Water Accounting at the Collective Irrigation System Scale Aiming at Optimizing Water Productivity. Agronomy 2023, 13, 1938. https://doi.org/10.3390/agronomy13071938

Irrigation & Energy Lab dissemination (oral communications) : in portugese and english

Gavilan, P., Higueras, J.L., Lozano, D., Ruiz, N., The Riego Berry mobile application: A powerful tool to improve on-farm irrigation performance in berry crops, Agricultural Water Management, Volume 292, 2024, 108682, ISSN 0378-3774, https://doi.org/10.1016/j.agwat.2024.108682

HubIS participation in national and international seminars and congresses (chronological order)

Gavilán, P., Ruiz, N., Lozano, D. 2021. Riego Berry. A tool for irrigation scheduling of berry crops. XVI National Congress of Horticultural Sciences. Córdoba, Spain, October 17-21, 2023. (www.researchgate.net/publication/355478881_Riego_Berry_Una_herramienta_para_la_programacion_del_riego_de_los_frutos_rojos)

Lozano, D. Ruiz, N., Gavilán, P. 2021. Laboratory of good agricultural practices for sustainable berry irrigation (Beirrig-Lab). XVI National Congress of Horticultural Sciences. Córdoba, Spain, October 17-21, 2023. www.researchgate.net/publication/355479070_Laboratorio_de_buenas_practicas_agrarias_para_el_riego_sostenible_de_frutos_rojos_Beirrig-Lab)

Gavilán, P., 2022. IFAPA’s Irrigation Advisory Service and the sustainability of irrigation in the Doñana National Park. Webinar – Decision support tools for irrigation and fertigation scheduling. Online, January 18, 2022. (https://www.cajamar.es/es/agroalimentario/innovacion/formacion/actividades-de-transferencia/ano-2022/webinar-herramientas-de-ayuda-para-la-programacion-del-riego-y-fertirriego/)

Gavilán, P., Vidal, E., Miranda, L., Ruiz, N. 2022. Historical irrigation schedules for raspberry crop in Huelva. LI Seminar of Technicians and Specialists in Horticulture. Almería, Spain, November 14-18, 2022. (www.researchgate.net/publication/372628657_CALENDARIOS_DE_RIEGO_MEDIOS_PARA_EL_CULTIVO_DE_LA_FRAMBUESA_EN_LA_PROVINCIA_DE_HUELVA)

Vidal, E., Gavilán, P., López, A., Gómez-Mora, J.A., Ruiz, N., Miranda, L. 2022. Optimizing nitrogen fertigation in raspberry crop. LI Seminar of Technicians and Specialists in Horticulture. Almería, Spain, November 14-18, 2022. (www.researchgate.net/publication/372628546_OPTIMIZACION_DE_LA_FERTILIZACION_NITROGENADA_EN_UN_CULTIVO_DE_FRAMBUESA_REMONTANTE)

Gavilán, P., 2023. Digitization tools for the improvement of berry crop irrigation efficiency. Description and validation. Webinar – Sustainability and Precision Farming. Online, February 16, 2023. (https://www.cajamar.es/es/agroalimentario/innovacion/formacion/actividades-de-transferencia/ano-2023/webinar-sostenibilidad-y-agricultura-de-precision-sesion-x-frutos-rojos/)

Gavilán, P., Ruiz, N., 2023. BeirrigLab. A tool to improve berry irrigation. VIII Conference of Agrometeorology. Valladolid, June 1, 2023. (www.researchgate.net/publication/372476790_BeirrigLab_Una_herramienta_para_mejorar_el_riego_de_los_frutos_rojos)

Ruiz, N., Gavilán, P. 2023. BeirrigLab. App Riego Berry. Operation and evaluation of a tool for berry irrigation scheduling. VIII Conference of Agrometeorology. Valladolid, June 1, 2023. (www.researchgate.net/publication/372476795_App_Riego_Berry_Funcionamiento_y_evaluacion_de_la_herramienta_de_programacion_del_riego_de_los_frutos_rojos)

Gavilán, P., Miranda, L., Gómez-Mora, J.A., Ruiz, N. 2023. Digital Tools for the improvement of berry crops fertigation. LII Seminar of Technicians and Specialists in Horticulture. Lugo, Spain,
September 2023. (www.researchgate.net/publication/374157112_HERRAMIENTAS_DIGITALES_PARA_LA_MEJORA_DE_LA_FERTIRRIGACION_DE_LOS_FRUTOS_ROJOS)

Ruiz, N., Miranda, L., Gómez-Mora, J.A., Gavilán, P. 2023. Export analysis and Nitrogen Balance in a Strawberry Crop. LII Seminar of Technicians and Specialists in Horticulture. Lugo, Spain,
September 2023. (www.researchgate.net/publication/374169651_Analisis_de_Extracciones_y_Balance_de_Nitrogeno_en_un_Cultivo_de_fresa)

HubIS Publication in technical journals (chronological order)

Gavilán, P., Lozano, D., and Ruiz, N. 2021. Improving blueberry irrigation using soil water balance. SERVIFAPA. Institute for Agricultural and Fisheries Research and Training. Department of Agriculture. Regional Government of Andalusia. March 2021. (www.researchgate.net/publication/349718844_Mejora_del_riego_del_arandano_usando_balance_de_agua_en_el_suelo)

Gavilán, P., Ruiz, N., Lozano, D. 2021. Riego Berry. A tool for Berry Irrigation Scheduling. User’s Guide. Institute for Agricultural and Fisheries Research and Training. Department of Agriculture. Regional Government of Andalusia. March 2021. (www.researchgate.net/publication/349733031_Riego_Berry_Una_herramienta_para_la_Programacion_del_Riego_de_los_Frutos_Rojos_Guia_de_uso)

Miranda, L., Lozano, D., Gómez, J.A., and Gavilán, P. 2021. Fertigation strategies in a strawberry crop in the province of Huelva. Vida Rural, 40-45. October 2021. (www.researchgate.net/publication/355927660_Estrategias_de_fertirriego_en_un_cultivo_de_fresa_en_la_provincia_de_Huelva)

Gavilán, P., Ruiz, N., and Lozano, D. 2021. Riego Berry. A tool for irrigation scheduling of berry crops. Actas de Horticultura. (www.researchgate.net/publication/355478881_Riego_Berry_Una_herramienta_para_la_programacion_del_riego_de_los_frutos_rojos)

Lozano, D., Ruiz, N., and Gavilán, P. 2021. Laboratory of good agricultural practices for sustainable berry irrigation (Beirrig-Lab). Actas de Horticultura. (www.researchgate.net/publication/355479070_Laboratorio_de_buenas_practicas_agrarias_para_el_riego_sostenible_de_frutos_rojos_Beirrig-Lab)

Gavilán, P., Ruiz, N., Lozano, D. 2022. Raspberry Irrigation Scheduling Based on Historical Weather Data. Institute for Agricultural and Fisheries Research and Training. Department of Agriculture. Regional Government of Andalusia. February 2022. (www.researchgate.net/publication/358581664_Calendarios_de_Riego_de_la_Frambuesa_Basados_en_Datos_Meteorologicos_Historicos)

Gavilán, P., Gómez-Mora, J.A., Molina, F., Ruiz, N., Miranda, L. 2022. Optimization of fertigation in a strawberry crop. Institute for Agricultural and Fisheries Research and Training. Department of Agriculture. Regional Government of Andalusia. February 2022. (www.researchgate.net/publication/359760715_Optimizacion_del_fertirriego_en_un_cultivo_de_fresa)

Gavilán, P., Lozano, D. Ruiz, N. 2022. Raspberry irrigation scheduling using historical weather series. Agricultura, 40-46. May 2022. (www.researchgate.net/publication/360619008_Programacion_del_riego_de_la_frambuesa_usando_series_meteorologicas_historicas)

Vidal, E., Gavilán, P., López, A., Gómez-Mora, J.A., Ruiz, N., Miranda, L. 2022. Analysis of the effect of nitrogen fertilization on the raspberry crop. Vida Rural, 32-37. October 2022. (www.researchgate.net/publication/365561013_Analisis_del_efecto_de_la_fertilizacion_nitrogenada_en_el_cultivo_de_la_frambuesa)

Vidal, E., Miranda, L., López, A., Gómez-Mora, J.A., Ruiz, N., Gavilán, P. 2022. Nitrogen Fertilizer Efficiency of a Raspberry Crop in Huelva. Institute for Agricultural and Fisheries Research and Training. Department of Agriculture. Regional Government of Andalusia. December 2022. (www.researchgate.net/publication/365891932_Eficiencia_de_la_Fertilizacion_Nitrogenada_de_un_Cultivo_de_Frambuesa_en_Huelva)

Lorite, I.J., Mateos, L., Orgaz, F., Fereres, E., Assessing deficit irrigation strategies at the level of an irrigation district, Agricultural Water Management, Volume 91, Issues 1–3, 2007, Pages 51-60, ISSN 0378-3774, https://doi.org/10.1016/j.agwat.2007.04.005

Mateos L., Lorite I., Lozano D., Fereres E., Water governance and management in the water users’ associations of Spain, in Hamdy A., Tüzün M., Lamaddalena N., Todorovic M., Bogliotti C. (ed), Participatory water saving management and water cultural heritage, Bari : CIHEAM, Options Méditerranéennes : Série B. Etudes et Recherches; n. 48, 2004, pages 233- 241

Mekki I., Ghazouani W., Closas A., Molle F., (2017) Perceptions of groundwater degradation and mitigation responses in the Haouaria region in Tunisia. Groundwater for Sustainable Development, Volume 5, Pages 101-110, ISSN 2352-801X, https://doi.org/10.1016/j.gsd.2017.05.001

Ferchichi, I.; Mekki, I.; Elloumi, M.; Arfa, L.; Lardon, S. Actors, Scales and Spaces Dynamics Linked to Groundwater Resources use for Agriculture Production in Haouaria Plain, Tunisia. A Territory Game Approach. Land 2020, 9, 74. https://doi.org/10.3390/land9030074

Ferchichi, I., Zairi, A., and Marlet, S.: Water scarcity conflicts: Supporting dialogue and negotiation, IAHS-AISH Scientific Assembly 2022, Montpellier, France, 29 May–3 Jun 2022, IAHS2022-425, https://doi.org/10.5194/iahs2022-425, 2022

Reports

The HubIS project internal reports are accessible here (first period : oct-20 to april-22) and here (second period : may-22 to Sept-23).

The complete, up-to-date bibliographic reference list for HubIS comes below.
1.
Sidiropoulos P, Dalezios NR, Loukas A, Mylopoulos N, Spiliotopoulos M, Faraslis IN, et al. Quantitative Classification of Desertification Severity for Degraded Aquifer Based on Remotely Sensed Drought Assessment. Hydrology [Internet]. 2021 Mar [cited 2021 Apr 14];8(1):47. Available from: https://www.mdpi.com/2306-5338/8/1/47
1.
Lankford B, Closas A, Dalton J, López Gunn E, Hess T, Knox JW, et al. A scale-based framework to understand the promises, pitfalls and paradoxes of irrigation efficiency to meet major water challenges. Global Environmental Change [Internet]. 2020 Nov 1 [cited 2020 Nov 17];65:102182. Available from: http://www.sciencedirect.com/science/article/pii/S0959378020307652
1.
Developing digital tools to optimize water use in agriculture [Internet]. International Potato Center. 2020 [cited 2020 Nov 17]. Available from: https://cipotato.org/blog/developing-digital-tools-optimize-water-use-agriculture/
1.
Blaise L. En Tunisie, l’agriculture fait sa révolution numérique. Le Monde.fr [Internet]. 2020 Sep 16 [cited 2020 Sep 17]; Available from: https://www.lemonde.fr/afrique/article/2020/09/16/en-tunisie-l-agriculture-fait-sa-revolution-numerique_6052455_3212.html
1.
Bouzidi Z, Faysse N, Kuper M, Billaud JP. Investigating the invisible roots of a prevailing narrative of farmers’ failed collective action in Morocco. The Journal of North African Studies [Internet]. 2020 May 3 [cited 2020 Sep 11];25(3):342–62. Available from: https://doi.org/10.1080/13629387.2018.1563492
1.
Naouri M, Kuper M, Hartani T. The power of translation: Innovation dialogues in the context of farmer-led innovation in the Algerian Sahara. Agricultural Systems [Internet]. 2020 Apr 1 [cited 2020 Nov 17];180:102793. Available from: http://www.sciencedirect.com/science/article/pii/S0308521X18302221
1.
Jovanovic N, Musvoto C, Clercq WD, Pienaar C, Petja B, Zairi A, et al. A Comparative Analysis of Yield Gaps and Water Productivity on Smallholder Farms in Ethiopia, South Africa and Tunisia. Irrigation and Drainage [Internet]. 2020 [cited 2020 Sep 11];69(S1):70–87. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/ird.2238
1.
Belaud G, Mateos L, Aliod R, Buisson MC, Faci E, Gendre S, et al. Irrigation and Energy: Issues and Challenges. Irrigation and Drainage [Internet]. 2020 [cited 2020 Sep 11];69(S1):177–85. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/ird.2343
1.
Hanafi S, Marlet S, Jamin JY, Imache A, Zairi A, Bahri H, et al. Participation in a Complex and Conflicting Context: Implementing a Shared Diagnosis in a Northern Tunisia Irrigation Scheme. Irrigation and Drainage [Internet]. 2020 [cited 2020 Sep 11];69(S1):60–9. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/ird.2224
1.
Froebrich J, Ludi E, Bouarfa S, Rollin D, Jovanovic N, Roble M, et al. Transdisciplinary Innovation in Irrigated Smallholder Agriculture in Africa. Irrigation and Drainage [Internet]. 2020 [cited 2020 Sep 11];69(S1):6–22. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/ird.2400
1.
Brunel G, Pichon L, Taylor J, Tisseyre B. Easy water stress detection system for vineyard irrigation management. In: Precision agriculture ?19 [Internet]. Wageningen Academic Publishers; 2019 [cited 2020 Sep 11]. p. 935–42. Available from: https://www.wageningenacademic.com/doi/10.3920/978-90-8686-888-9_115
1.
Ogilvie A, Riaux J, Massuel S, Mulligan M, Belaud G, Le Goulven P, et al. Socio-hydrological drivers of agricultural water use in small reservoirs. Agricultural Water Management [Internet]. 2019 Jun 1 [cited 2020 Sep 11];218:17–29. Available from: http://www.sciencedirect.com/science/article/pii/S0378377418308503
1.
Roux S, Gaudin R, Tisseyre B. Why does spatial extrapolation of the vine water status make sense? Insights from a modelling approach. Agricultural Water Management [Internet]. 2019 May 20 [cited 2020 Sep 11];217:255–64. Available from: http://www.sciencedirect.com/science/article/pii/S0378377418309223
1.
Pichon L, Leroux C, Macombe C, Taylor J, Tisseyre B. What relevant information can be identified by experts on unmanned aerial vehicles’ visible images for precision viticulture? Precision Agric [Internet]. 2019 Apr 1 [cited 2020 Sep 11];20(2):278–94. Available from: https://doi.org/10.1007/s11119-019-09634-0
1.
Dalezios NR, Dercas N, Spyropoulos NV, Psomiadis E. Remotely Sensed Methodologies for Crop Water Availability and Requirements in Precision Farming of Vulnerable Agriculture. Water Resour Manage [Internet]. 2019 Mar 1 [cited 2020 Sep 11];33(4):1499–519. Available from: https://doi.org/10.1007/s11269-018-2161-8
1.
Chevalier JM, Buckles DJ, Buckles DJ. Participatory Action Research : Theory and Methods for Engaged Inquiry [Internet]. Routledge; 2019 [cited 2020 Sep 11]. Available from: https://www.taylorfrancis.com/books/9781351033268
1.
Amiri K, Hartani T, Zeddouri A. The assessment of an integrated bio-filter systems for the wastewaters treatment in arid regions (Touggourt, Algeria). Management of Environmental Quality: An International Journal [Internet]. 2019 Jan 1 [cited 2020 Sep 11];30(4):890–908. Available from: https://doi.org/10.1108/MEQ-05-2018-0095
1.
Molle F, Ibor CS, Reus LA, editors. Irrigation in the Mediterranean: Technologies, Institutions and Policies [Internet]. Springer International Publishing; 2019 [cited 2020 Sep 11]. (Global Issues in Water Policy). Available from: https://www.springer.com/gp/book/9783030036966
1.
Mouna K. Identité de la marge [Internet]. 2018 [cited 2020 Sep 11]. Available from: https://www.peterlang.com/view/title/67694
1.
Grafton RQ, Williams J, Perry CJ, Molle F, Ringler C, Steduto P, et al. The paradox of irrigation efficiency. Science [Internet]. 2018 Aug 24 [cited 2020 Sep 11];361(6404):748–50. Available from: https://science.sciencemag.org/content/361/6404/748
1.
Karacostas T, Kartsios S, Pytharoulis I, Tegoulias I, Bampzelis D. Observations and modelling of the characteristics of convective activity related to a potential rain enhancement program in central Greece. Atmospheric Research [Internet]. 2018 Aug 1 [cited 2020 Sep 11];208:218–28. Available from: http://www.sciencedirect.com/science/article/pii/S0169809517306439
1.
Mateos L, dos Santos Almeida AC, Frizzone JA, Lima SCRV. Performance assessment of smallholder irrigation based on an energy-water-yield nexus approach. Agricultural Water Management [Internet]. 2018 Jul 30 [cited 2020 Sep 11];206:176–86. Available from: http://www.sciencedirect.com/science/article/pii/S0378377418306322
1.
Stamatiadis S, Schepers JS, Evangelou E, Tsadilas C, Glampedakis A, Glampedakis M, et al. Variable-rate nitrogen fertilization of winter wheat under high spatial resolution. Precision Agric [Internet]. 2018 Jun 1 [cited 2020 Sep 11];19(3):570–87. Available from: https://doi.org/10.1007/s11119-017-9540-7
1.
Leroux C, Jones H, Pichon L, Guillaume S, Lamour J, Taylor J, et al. GeoFIS: An Open Source, Decision-Support Tool for Precision Agriculture Data. Agriculture [Internet]. 2018 Jun [cited 2020 Sep 11];8(6):73. Available from: https://www.mdpi.com/2077-0472/8/6/73
1.
Herrero-Langreo A, Tisseyre B, Roger JM, Scholasch T. Test of sampling methods to optimize the calibration of vine water status spatial models. Precision Agric [Internet]. 2018 Apr 1 [cited 2020 Sep 11];19(2):365–78. Available from: https://doi.org/10.1007/s11119-017-9523-8
1.
Souissi I, Boisson JM, Mekki I, Therond O, Flichman G, Wery J, et al. Impact assessment of climate change on farming systems in the South Mediterranean area: a Tunisian case study. Reg Environ Change [Internet]. 2018 Mar 1 [cited 2020 Sep 11];18(3):637–50. Available from: https://doi.org/10.1007/s10113-017-1130-8
1.
Zitouna-Chebbi R, Prévot L, Chakhar A, Marniche-Ben Abdallah M, Jacob F. Observing Actual Evapotranspiration from Flux Tower Eddy Covariance Measurements within a Hilly Watershed: Case Study of the Kamech Site, Cap Bon Peninsula, Tunisia. Atmosphere [Internet]. 2018 Feb [cited 2020 Sep 11];9(2):68. Available from: https://www.mdpi.com/2073-4433/9/2/68
1.
Bouzidi Z. Role and Effectivness of the EU Policies in the Fields of Water and Agriculture in Morocco: A Bottom-up Approach. 2018;(23):32. Available from: http://www.medreset.eu/role-effectivness-eu-policies-fields-water-agriculture-morocco-bottom-approach/
1.
Dalezios NR, Mitrakopoulos K, Manos B. Multi-scaling Agroclimatic Classification for Decision Support Towards Sustainable Production. In: Berbel J, Bournaris T, Manos B, Matsatsinis N, Viaggi D, editors. Multicriteria Analysis in Agriculture: Current Trends and Recent Applications [Internet]. Cham: Springer International Publishing; 2018 [cited 2020 Sep 11]. p. 1–42. (Multiple Criteria Decision Making). Available from: https://doi.org/10.1007/978-3-319-76929-5_1
1.
Dalezios NR, Dercas N, Eslamian SS. Water scarcity management: part 2: satellite-based composite drought analysis. International Journal of Global Environmental Issues [Internet]. 2018 [cited 2020 Sep 11];17(2/3):262–95. Available from: https://ideas.repec.org/a/ids/ijgenv/v17y2018i2-3p262-295.html
1.
Elamri Y, Cheviron B, Lopez JM, Dejean C, Belaud G. Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces. Agricultural Water Management [Internet]. 2018 [cited 2020 Sep 11];208(C):440–53. Available from: https://ideas.repec.org/a/eee/agiwat/v208y2018icp440-453.html
1.
Laib K, Hartani T, Bouarfa S, Kuper M, Mailhol JC. Connecting Drip Irrigation Performance to Farmers’ Practices: The Case of Greenhouse Horticulture in the Algerian Sahara. Irrigation and Drainage [Internet]. 2018 [cited 2020 Sep 11];67(3):392–403. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/ird.2228
1.
Mekki I, Ghazouani W, Closas A, Molle F. Perceptions of groundwater degradation and mitigation responses in the Haouaria region in Tunisia. Groundwater for Sustainable Development [Internet]. 2017 Sep 1 [cited 2020 Sep 11];5:101–10. Available from: http://www.sciencedirect.com/science/article/pii/S2352801X17300437
1.
Lejars C, Daoudi A, Amichi H. The key role of supply chain actors in groundwater irrigation development in North Africa. Hydrogeol J [Internet]. 2017 Sep 1 [cited 2020 Sep 11];25(6):1593–606. Available from: https://doi.org/10.1007/s10040-017-1571-7
1.
Kuper M, Leduc C, Massuel S, Bouarfa S. Topical Collection: Groundwater-based agriculture in the Mediterranean. Hydrogeol J [Internet]. 2017 Sep 1 [cited 2020 Sep 11];25(6):1525–8. Available from: https://doi.org/10.1007/s10040-017-1598-9
1.
Dalezios NR, Spyropoulos NV, Eslamian S, Spyropoulos NV, Eslamian S. Remote Sensing in Drought Quantification and Assessment [Internet]. Handbook of Drought and Water Scarcity. 2017 [cited 2020 Sep 11]. Available from: https://www.taylorfrancis.com/
1.
Venot JP, Kuper M, Zwarteveen M, Kuper M, Zwarteveen M. Drip Irrigation for Agriculture : Untold Stories of Efficiency, Innovation and Development [Internet]. Routledge; 2017 [cited 2020 Nov 17]. Available from: https://www.taylorfrancis.com/books/e/9781315537146
1.
Naouri M, Hartani T, Kuper M, Hartani T, Kuper M. The ‘innovation factory’ : User-led incremental innovation of drip irrigation systems in the Algerian Sahara [Internet]. Drip Irrigation for Agriculture. 2017 [cited 2020 Sep 11]. Available from: https://www.taylorfrancis.com/
1.
Rebai AO, Hartani T, Chabaca MN, Kuper M. Une innovation incrémentielle : la conception et la diffusion d’un pivot d’irrigation artisanal dans le Souf (Sahara algérien). Cah Agric [Internet]. 2017 May 1 [cited 2020 Sep 11];26(3):35005. Available from: https://www.cahiersagricultures.fr/articles/cagri/abs/2017/03/cagri160195/cagri160195.html
1.
Paredes P, Rodrigues GC, Cameira M do R, Torres MO, Pereira LS. Assessing yield, water productivity and farm economic returns of malt barley as influenced by the sowing dates and supplemental irrigation. Agricultural Water Management [Internet]. 2017 Jan 1 [cited 2020 Sep 11];179:132–43. Available from: http://www.sciencedirect.com/science/article/pii/S0378377416302013
1.
Ferchichi I, Marlet S, Zairi A. How Farmers Deal with Water Scarcity in Community-Managed Irrigation SYSTEMS: A Case Study in Northern Tunisia. Irrigation and Drainage [Internet]. 2017 [cited 2020 Sep 11];66(4):556–66. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/ird.2135
1.
Tegoulias I, Kartsios S, Pytharoulis I, Kotsopoulos S, Karacostas TS. The Influence of WRF Parameterisation Schemes on High Resolution Simulations Over Greece. In: Karacostas T, Bais A, Nastos PT, editors. Perspectives on Atmospheric Sciences. Cham: Springer International Publishing; 2017. p. 3–8. (Springer Atmospheric Sciences).
1.
Kartsios S, Karacostas TS, Pytharoulis I, Dimitrakopoulos AP. The Role of Heat Extinction Depth Concept to Fire Behavior: An Application to WRF-SFIRE Model. In: Karacostas T, Bais A, Nastos PT, editors. Perspectives on Atmospheric Sciences. Cham: Springer International Publishing; 2017. p. 137–42. (Springer Atmospheric Sciences).
1.
Knist S, Goergen K, Buonomo E, Christensen OB, Colette A, Cardoso RM, et al. Land-atmosphere coupling in EURO-CORDEX evaluation experiments. Journal of Geophysical Research: Atmospheres [Internet]. 2017 [cited 2020 Sep 11];122(1):79–103. Available from: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JD025476
1.
Bradaï A, Douaoui A, Bettahar N, Yahiaoui I. Improving the Prediction Accuracy of Groundwater Salinity Mapping Using Indicator Kriging Method. Journal of Irrigation and Drainage Engineering [Internet]. 2016 Jul 1 [cited 2020 Sep 11];142(7):04016023. Available from: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29IR.1943-4774.0001019
1.
Navarro A, Rolim J, Miguel I, Catalão J, Silva J, Painho M, et al. Crop Monitoring Based on SPOT-5 Take-5 and Sentinel-1A Data for the Estimation of Crop Water Requirements. Remote Sensing [Internet]. 2016 Jun [cited 2020 Sep 11];8(6):525. Available from: https://www.mdpi.com/2072-4292/8/6/525
1.
Lozano D, Ruiz N, Gavilán P. Consumptive water use and irrigation performance of strawberries. Agricultural Water Management [Internet]. 2016 May 1 [cited 2020 Sep 11];169:44–51. Available from: http://www.sciencedirect.com/science/article/pii/S037837741630049X
1.
Mateos L, Araus JL. Hydrological, engineering, agronomical, breeding and physiological pathways for the effective and efficient use of water in agriculture. Agricultural Water Management [Internet]. 2016 Jan 31 [cited 2020 Sep 11];164:190–6. Available from: http://www.sciencedirect.com/science/article/pii/S0378377415301360
1.
Bouzidi Z. Se coordonner dans un périmètre irrigué public au Maroc : contradictio in terminis ? [Internet]. 2016 [cited 2020 Sep 11]. Available from: https://www.peterlang.com/view/title/51026
1.
Cid P, Gómez‐Macpherson H, Boulal H, Mateos L. Catchment scale hydrology of an irrigated cropping system under soil conservation practices. Hydrological Processes [Internet]. 2016 [cited 2020 Sep 11];30(24):4593–608. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/hyp.10944